NATURE

Diversity and biogeography of the bacterial microbiome in glacier-fed streams


  • Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pörtner, H.-O. et al. (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).

  • Ménot, G. et al. Early reactivation of European rivers ruring the last deglaciation. Science 313, 1623–1625 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clason, C. et al. Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities. Ann. Glaciol. 63, 73–78 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang. 2, 361–364 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hotaling, S., Finn, D. S., Joseph Giersch, J., Weisrock, D. W. & Jacobsen, D. Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev. 92, 2024–2045 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Vega, E., Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Glacial recession in Andean North-Patagonia (Argentina): microbial communities in benthic biofilms of glacier-fed streams. Hydrobiologia 850, 3965–3979 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022).

  • Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Milner, A. M. & Petts, G. E. Glacial rivers: physical habitat and ecology. Freshw. Biol. 32, 295–307 (1994).

    Article 

    Google Scholar
     

  • Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16, 671–683 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Danovaro, R., Corinaldesi, C., Rastelli, E. & Anno, A. D. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquat. Microb. Ecol. 75, 81–90 (2015).

    Article 

    Google Scholar
     

  • Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Chang. Biol. 25, 2576–2590 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ezzat, L. et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol. 88, e00421–e00422 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Embracing mountain microbiome and ecosystem functions under global change. New Phytol. 234, 1987–2002 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl Acad. Sci. USA 113, 1737–1742 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Picazo, F. et al. Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome 8, 92 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at bioRxiv https://doi.org/10.1101/081257 (2016).

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Souza, V., Eguiarte, L. E., Siefert, J. & Elser, J. J. Microbial endemism: does phosphorus limitation enhance speciation? Nat. Rev. Microbiol. 6, 559–564 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rinaldo, A., Gatto, M. & Rodríguez-Iturbe, I. River Networks as Ecological Corridors: Species, Populations, Pathogens (Cambridge Univ. Press, 2020).

  • Nemergut, D. R. et al. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13, 135–144 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clark, D. R., Underwood, G. J. C., McGenity, T. J. & Dumbrell, A. J. What drives study-dependent differences in distance–decay relationships of microbial communities? Glob. Ecol. Biogeogr. 30, 811–825 (2021).

    Article 

    Google Scholar
     

  • Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).

  • Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fodelianakis, S., Valenzuela-Cuevas, A., Barozzi, A. & Daffonchio, D. Direct quantification of ecological drift at the population level in synthetic bacterial communities. ISME J. 15, 55–66 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep. 9, 55–70 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020).

  • Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019).

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piñeiro, C., Abuín, J. M. & Pichel, J. C. Very Fast Tree: speeding up the estimation of phylogenies for large alignments through parallelization and vectorization strategies. Bioinformatics 36, 4658–4659 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunities in glacier-fed streams. Nat. Commun. 13, 2168 (2022).

  • Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Queirós, P., Delogu, F., Hickl, O., May, P. & Wilmes, P. Mantis: flexible and consensus-driven genome annotation. Gigascience 10, giab042 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar
     

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Li, D. hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw. 3, 1041 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wood, S. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package v.1.8-42 (CRAN, 2023).

  • Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

  • Oksanen, J., Kindt, R. & O’Hara, B. Vegan: R functions for vegetation ecologists. Date of access 15, 2014 (2005).


    Google Scholar
     

  • Martinez Arbizu, P. pairwiseAdonis: pairwise multilevel comparison using adonis. R package v.0.4 (GitHub, 2017).

  • Warton, D. I., Wright, S. T. & Wang, Y. Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Article 

    Google Scholar
     

  • Wang, Y. I., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—An R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article 

    Google Scholar
     

  • Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package v.0.3-21 (CRAN, 2023).

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ricotta, C., Pavoine, S., Cerabolini, B. E. L. & Pillar, V. D. A new method for indicator species analysis in the framework of multivariate analysis of variance. J. Veg. Sci. 32, e13013 (2021).

    Article 

    Google Scholar
     

  • Pavoine, S. adiv: An R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).

    Article 

    Google Scholar
     

  • Wilke, C. O. ggridges: ridgeline plots in ‘ggplot2’. R package v.0.5.4 (CRAN, 2021).

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spherical trigonometry 1, 1–45 (2017).


    Google Scholar
     

  • Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Article 

    Google Scholar
     

  • Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).

    Article 

    Google Scholar
     

  • Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article 

    Google Scholar
     

  • Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). R package v.0.0-8 (R-Forge, 2007).

  • Legendre, P. et al. Partitioning beta diversity in a subtropical broad‐leaved forest of China. Ecology 90, 663–674 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol. 38, 4039–4042 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tenenbaum, D. et al. KEGGREST: client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). R package v.1.32.0 (Bioconductor, 2021).

  • Wickham, H. et al. ggplot2: create elegant data visualisations using the grammar of graphics. R package v.3.5.0 (CRAN, 2024).

  • Kolde, R. pheatmap: pretty heatmaps. R package v.1.0.12 (CRAN, 2019).

  • Yan, Q. et al. Distinct strategies of the habitat generalists and specialists in sediment of Tibetan lakes. Environ. Microbiol. 24, 4153–4166 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Salazar, G. EcolUtils: utilities for community ecology analysis. R package v.3 (2020).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • RStudio Team. RStudio: integrated development environment for R (RStudio, 2021).

  • Massicotte, P. & South, A. rnaturalearth: world map data from Natural Earth. R package v.1.0.1 (CRAN, 2017).

  • Ezzat, L. et al. Diversity and biogeography of the glacier-fed stream bacterial microbiome. Zenodo https://doi.org/10.5281/zenodo.13897903 (2024).



  • Source link

    PennsylvaniaDigitalNews.com